Analysis of the Impact of Biomass Burning on Tropospheric O_3 Using Assimilated TES Observations and Complementary Satellite Data **Dylan Jones University of Toronto** Kevin Bowman, John Worden, Helen Worden, Greg Osterman, Susan Kulawik Jet Propulsion Laboratory California Institute of Technology Jennifer Logan Harvard University Randall Martin Dalhousie University ## Analysis of the Impact of Biomass Burning on CO and O₃ Climatological emission inventory in the model underestimates the biomass burning Objective: Assess whether the TES data have sufficient information to correct the underestimate in the model in a chemical data assimilation framework ## **Chemical Data Assimilation Methodology** #### **Sub-optimal Kalman filter** $$\hat{\mathbf{x}}_k^a = \mathbf{x}_k^f + \mathbf{K}_k [\mathbf{y}^{\text{obs}} - \mathbf{H}_k \mathbf{x}_k^f]$$ Kalman Gain Matrix: $$\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$$ Analysis Error Cov. Matrix: $P_k^a = (I - K_k H_k) P_k^f$ (analysis error variance transported as a passive tracer) #### **Model and Data Streams** - GEOS-Chem model with full nonlinear tropospheric chemistry (4° x 5° resolution) - CO profile retrievals from TES for Nov. 4-17 2004 - O₃ profile retrievals from TES for Nov. 4-17 2004 - NO₂ column retrievals from SCIAMACHY for Nov. 4-17, 2004 - 6-hour analysis cycle - Assumed forecast error of 20% for CO, 50% for O₃, and 100% for NO₂ - Neglected horizontal correlations in forecast and observation error covariance matrices ## Impact of Assimilation on CO and O₃ - Assimilation increases CO throughout the southern hemisphere - Largest increases in O_3 (20-30%) are over the Indian Ocean and the Indonesian/Australian region ## Influence of Assimilation of O₃ on NO_x Modelled NO_x distribution produced with the assimilation of TES CO and O_3 Assimilation of O_3 significantly influences the NO_x distribution, because of the chemical coupling: large decreases in NO_x (15-30%) over the Indian Ocean and the Indonesian/Australian region, where the O_3 increase is the greatest Suggests that changes in O_3 in the assimilation can provide constraints in the chemical processes in the model #### **Assimilation of SCIAMACHY NO₂** Assimilated NO_x at 1 km at 09:00 GMT on Nov. 5th Assimilation includes only NO₂ from SCIAMACHY - Large local changes in NO_x due to the NO₂ assimilation - Changes in O₃ are small, due to short lifetime of NO_x Change in NO_x at 1 km 09:00 GMT (assim. - without assim.) Change in 24-hr ave. O₃ at 2 km (assim. - without assim.) - Assimilation of NO₂ helps constrain the chemistry, but will require obs. with greater spatial and temporal coverage - Updating the NOx emissions in the assimilation would be the most effective approach #### Assimilation of O₃, CO, and NO₂ Absolute change in NO_x at 2 km on Nov. 14th Change in assimilated O₃ at 2 km (NO₂ assim. - without NO₂ assim.) Assimilation includes data from SCIAMACHY and TES - In the southern hemisphere, largest changes in NO_x are typically over South America, Africa, and the Atlantic - NO₂ assimilation produced small additional increases in O₃ (beyond increases produced by assimilation of the TES data) - Largest NO_x-induced increases in O₃ are over South America, Africa, and the Atlantic, whereas the O₃ assimilation led to increases in O₃ mainly over the Indonesian region ⇒ SCIA NO₂ is providing limited but complementary information in the assimilation #### **Conclusions** - Assimilation of TES data reduced significantly the underestimate of CO and O₃ from biomass burning in the southern hemisphere in the model ⇒ TES CO and O₃ have sufficient information, when assimilated in a CTM, to dramatically improve the model simulation of CO and O₃ - Assimilation of O_3 observations results in a repartitioning of NO_y in the model, with large changes in the abundance of NO_x , reflecting the underlying chemical processes - \Rightarrow the assimilation of TES data, together with an adjoint of the CTM, will enable us to obtain a better understanding of the chemical processes controlling O_3 - Assimilation of NO_2 from SCIAMACHY provides constraints on NO_x , but its effect is limited because of the short lifetime of NO_x - → assimilation of observations with greater spatial and temporal coverage (such as NO₂ from OMI) would be helpful - > a 4Dvar dual state-source estimation approach will provide the best constraints on the chemistry